# Epitaxial $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ Thin Films via Molecular-Beam Epitaxy and Topotactic Transformation: A Model System for Sodium Intercalation 

Stephanie D. Matson, Jiaxin Sun, Jason J. Huang, Don J. Werder, Darrell G. Schlom, and Andrej Singer*



Cite This: J. Phys. Chem. C 2023, 127, 6638-6644


Read Online

| ACCESS | Wlll Metrics \& More | 四 Article Recommendations |
| :---: | :---: | :---: |


#### Abstract

Renewable energy sources such as solar and wind are critical to combatting global warming. Nevertheless, their intermittent energy generation requires the development of large-scale grid energy storage, in contrast to the ondemand generation of coal-based power plants. Sodium-ion batteries offer a promising potential technology, yet because sodium ions are larger than lithium ions, sodium-ion intercalation results in more drastic structural rearrangements. An improved understanding of structural dynamics and ionic diffusion pathways is crucial to developing more durable sodium-ion batteries. Here, we synthesize   epitaxial $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ by using molecular-beam epitaxy and topotactic transformation. In the synthesized epitaxial films, the $\mathrm{CoO}_{2}$ layers are canted with respect to the film surface, allowing electrochemical extraction of sodium ions, which we confirm via ex situ X-ray diffraction. We anticipate the epitaxial thin films reported here to enable future operando studies of interfaces, subtle lattice distortions, and microstructure during electrochemical cycling.


## - INTRODUCTION

Lithium-ion batteries are ubiquitous, yet the insufficient resources of lithium, cobalt, and other transition metals prevent lithium-ion batteries from meeting all our energy demands. ${ }^{1,2}$ Sodium-ion batteries are a promising low-cost alternative: ${ }^{3-5}$ their chemistry is similar to the more mature lithium-ion battery technology, sodium-ion batteries can be made with more abundant transition-metal oxides, ${ }^{6}$ and sodium is abundant itself. ${ }^{3}$ While sodium-ion batteries are most compelling for grid storage, they could also offer viable alternatives for powering portable electronics and electric vehicles and have a stronger foothold as we steadily deplete the lithium available today. ${ }^{3}$

For being viable as an alternative energy storage solution, sodium-ion intercalation compounds such as layered tran-sition-metal oxides have yet to show the required durability. The materials degrade rapidly, and one of the challenges preventing further development is the limited understanding of the intercalation-induced degradation mechanisms. A typical positive electrode comprises nanoparticles of the active material, carbon black for improved electron conductivity, and polymer binders for mechanical stabilization, all commonly added during cathode slurry formation. ${ }^{7}$ Recent research successfully revealed some of the internal mechanisms occurring in the active material during intercalation, yet the multicomponent nanoparticulate morphology makes it inherently challenging to study fundamental mechanisms. Much insight could arise from investigating single crystals, yet the intercalation dynamics and poor electric conductivity limit the
crystal sizes that can be efficiently intercalated to the microscale. Epitaxial thin films combine the nanometer length scale for facile intercalation of ions perpendicular to the film surface and long-range order over millimeters parallel to the surface to acquire high-quality, single-crystal-like operando Xray data, inaccessible in common nanoparticulate systems. The films would also enable operando optical microscopy of intercalation dynamics in real time at the micrometer level and operando access to electronic transport.
Like $\mathrm{Li}_{x} \mathrm{CoO}_{2}$, a common commercial cathode material, $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ can reversibly store sodium ions, making it a potential cathode material. ${ }^{8}$ Notably, $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ exhibits superconductivity after intercalating with water, suggesting intricate correlated physics inside the $\mathrm{CoO}_{2}$ layers. ${ }^{9,10}$ Previously, $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ thin films have been deposited using pulsed-laser deposition (PLD) ${ }^{11}$ on $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ (001), $\mathrm{SrTiO}_{3}$ (001), a bulk $\mathrm{Na}_{3.4} \mathrm{Sc}_{0.4} \mathrm{Zr}_{1.6}\left(\mathrm{SiO}_{4}\right)_{2}\left(\mathrm{PO}_{4}\right)$ Nasicon solid electrolyte, and onto Au -coated MgO (001). These epitaxial $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ model systems have been grown with their $c$-axis perpendicular to the plane of the substrate surface ${ }^{9,10,12-14}$ (see Table 1). Yet films grown with the $c$-axis perpendicular to the substrate are disadvantageous for electrochemical inter-

[^0]

Table 1. Methods of Published $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ Thin-Film Deposition All Grown with Their C-axis Perpendicular to the Plane of the Substrate ${ }^{a,},{ }^{, 10,12-14}$

| research group | substrate (surface) | film prior to topotactic transformation (surface) | film after topotactic transformation/direct growth (surface) |
| :---: | :---: | :---: | :---: |
| Venimadhav et al. ${ }^{11}$ | $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}(001)$ | $\mathrm{Co}_{3} \mathrm{O}_{4}$ (111) | epitaxial $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ (001) |
| Krockenberger et al. ${ }^{10}$ | $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}(001)$ | N/A (direct growth) | epitaxial $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ (001) |
| Kehne et al. ${ }^{12}$ | $\mathrm{Na}_{3.4} \mathrm{Sc}_{0.4} \mathrm{Zr}_{1.6}\left(\mathrm{SiO}_{4}\right)_{2}\left(\mathrm{PO}_{4}\right)$ Nasicon solid electrolyte | N/A (direct growth) | $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ (001) |
| Shibata et al. ${ }^{13}$ | Au -deposited MgO (001) | N/A (direct growth) | epitaxial $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ (001) |
| Hildebrandt et al. ${ }^{9}$ | $\mathrm{SrTiO}_{3}(001)$ | $\mathrm{Co}_{3} \mathrm{O}_{4}$ (111) | epitaxial $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ (001) |

${ }^{a}$ Hildebrandt et al. (ref 9) also grew $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ on $\mathrm{SrTiO}_{3}(110), \mathrm{SrTiO}_{3}$ (111), c-cut $\mathrm{Al}_{2} \mathrm{O}_{3}$, and MgO (111), but results on the epitaxial orientation of those films and especially each film's $c$-axis orientation are limited.
calation because sodium-ion transport occurs along the layers of $\mathrm{CoO}_{2}$ (normal to the $c$-axis). In a perfectly crystalline film, the ions would need to migrate from the edges of the film to penetrate the material, which is prohibitively slow. Here, we synthesize an epitaxial thin film of $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ with a $c$-axis canted to the substrate normal by combining molecular-beam epitaxy (MBE) and a topotactic transformation. We show that the films are epitaxial and demonstrate sodium extraction in an electrochemical cell (see Figure 1).


Figure 1. Schematic of the study. MBE-grown $\mathrm{Co}_{3} \mathrm{O}_{4}$ films (a) are topotactically transformed to $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ (b), and subsequently electrochemically charged to $\mathrm{Na}_{x-\delta} \mathrm{CoO}_{2}$ (c).

## - METHODS

Molecular-Beam Epitaxy. Initial thin-film growth was performed in the PARADIM (Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials) user facility. Chemo-mechanically polished $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ $\mathrm{MgAl}_{2} \mathrm{O}_{4}$ substrates (CrysTec GmbH ) were used as received (the substrate surface is $(001)_{C}, \mathrm{C}$ : cubic). The $\mathrm{Co}_{3} \mathrm{O}_{4}$ thin films were synthesized in a Veeco Gen-10 MBE system at a substrate temperature of $350^{\circ} \mathrm{C}$ and a background atmosphere of $10 \% \mathrm{O}_{3}+90 \% \mathrm{O}_{2}$. The cell temperature used to deposit $\mathrm{Co}_{3} \mathrm{O}_{4}$ was $1238-1250{ }^{\circ} \mathrm{C}$, depending on the cobalt flux from the effusion cell at the time of deposition. The typical flux used for $\mathrm{Co}_{3} \mathrm{O}_{4}$ deposition was $1 \times 10^{13}$ atoms $/\left[\mathrm{cm}^{2} \mathrm{~s}\right]$. The quality of the $\mathrm{Co}_{3} \mathrm{O}_{4}$ was determined by examining the in situ reflection high-energy electron diffraction (RHEED) ${ }^{15,16}$ patterns during thin-film deposition (see the inset in Figure 2a) and X-ray diffraction (XRD) after deposition (see Figure 2a, top), where asterisks indicate substrate peaks and $\mathrm{Co}_{3} \mathrm{O}_{4}$ peaks, some of which overlap due to a small $0.01 \%$ lattice mismatch. ${ }^{17}$ A water-lubricated diamond saw was used to cut each $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ film of $\mathrm{Co}_{3} \mathrm{O}_{4}$ deposited on a $\mathrm{MgAl}_{2} \mathrm{O}_{4}$ $(001)_{\mathrm{C}}$ substrate into $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ films before the
topotactic transformation. Subsequent cleaning was done using water, followed by acetone and isopropyl alcohol (IPA).

Topotactic Transformation. We topotactically transformed the films inside a pristine alumina single-bore furnace tube using the LabTemp-Tube-furnace-1700-C-1. The films were annealed in air in a bed of excess sodium bicarbonate and heated with a ramp rate of $300^{\circ} \mathrm{C} / \mathrm{h}$. They were held at 800 ${ }^{\circ} \mathrm{C}$ for 2.3 h and ambiently cooled to room temperature to achieve the topotactic transformation. ${ }^{11}$ The films were then cleaned again with IPA. After the topotactic transformation, the $\mathrm{Na}_{\mathrm{x}} \mathrm{CoO}_{2}$ thin films became water-sensitive and degraded if exposed to water, as seen via X-ray diffraction (not shown). Therefore, we used no acetone or water to clean the films after the topotactic transformation and stored the samples inside a desiccator to prevent exposure to humidity in the air after the transformation step. Prior work by Venimadhav et al. used topotactic transformation of the $(111)_{\mathrm{C}}$-oriented cubic structure utilizing sodium vapor. ${ }^{11}$ The quality of $(111)_{\mathrm{C}^{-}}$ oriented $\mathrm{Co}_{3} \mathrm{O}_{4}$ is inferior to $(001)_{\mathrm{C}}$-oriented $\mathrm{Co}_{3} \mathrm{O}_{4}$ due to a higher energy surface that produces rougher films on sapphire by PLD and likely MBE. The $(001)_{\mathrm{C}}$-oriented cubic $\mathrm{Co}_{3} \mathrm{O}_{4}$ had a smooth surface with a root-mean-square roughness of 50 pm as measured by atomic force microscopy (AFM, not shown) due to the low surface energy. Notably, though the $(001)_{\mathrm{C}}$ surface is more stable than $(111)_{\mathrm{C}}$, the topotactic transformation ${ }^{11}$ can still occur as described below.

Characterization of Thin Films. X-ray diffraction (XRD) measurements were performed ex situ after growth using PANalytical Empyrean and Rigaku SmartLab X-ray diffractometers with $\mathrm{Cu} \mathrm{K} \alpha-1$ radiation. ${ }^{18}$ AFM images are measured using Asylum Cypher Environmental AFM and Asylum MFP-3D-BIO AFM. ${ }^{19}$ An Amscope 40X-500X Trinocular DualIllumination Upright Metallurgical Microscope with a 3MP attached camera and polarizers was used to acquire optical microscopy images. ${ }^{20}$ A Zeiss Gemini 500 Scanning Electron Microscope was used to collect SEM images and EDS data (not shown). ${ }^{21}$ A Thermo Fisher Spectra cold-field emission scanning transmission electron microscope (STEM) was used. ${ }^{21,22}$ The microscope was operated at 120 kV with a convergence angle of 30 mrad . The final high-angle annular dark-field (HAADF) image was obtained by image registration of 20 fast (frame time $=0.5 \mathrm{~s}$ ) images using Velox software.

Electrochemical Measurements. A three-electrode Swagelok setup was used to build a half-cell with pure sodium as the anode material and the thin film of $\mathrm{Na}_{\mathrm{x}} \mathrm{CoO}_{2}$ on $\mathrm{MgAl}_{2} \mathrm{O}_{4}$ as the cathode material. ${ }^{23}$ The sodium was stored in kerosene inside an argon-filled glovebox to prevent oxidation before cell assembly. Half-cell assembly was done inside an argon-filled


Figure 2. Crystal structure characterization. (a) XRD pattern of $\mathrm{Co}_{3} \mathrm{O}_{4}$ deposited onto $\mathrm{MgAl}_{2} \mathrm{O}_{4}(001)_{\mathrm{C}}$ (top) and topotactically transformed $\mathrm{Na}_{\mathrm{x}} \mathrm{CoO}_{2}$ on $\mathrm{MgAl}_{2} \mathrm{O}_{4}$ (bottom) measured along the $[001]_{\mathrm{C}}$ direction. The strong substrate $004_{\mathrm{C}}$ peak at $2 \theta=44.8^{\circ}$ has an intensity of $3 \times 10^{5}$ counts/s and is cut off for better visibility. (Inset) RHEED pattern of $\mathrm{Co}_{3} \mathrm{O}_{4}$ along [110] $\mathrm{C}_{\mathrm{C}}$. (b) Azimuthal $\phi$-scan of $\mathrm{Na}_{x} \mathrm{CoO}_{2} 105_{\mathrm{Hex}}$ peak measured with an inclination of $\chi=20^{\circ}$ out of the scattering plane (see a red plane in (d)). (c) STEM image of topotactically transformed $\mathrm{Na}_{\mathrm{x}} \mathrm{CoO}_{2}$ on $\mathrm{MgAl}_{2} \mathrm{O}_{4}$, projected along $[1 \overline{1} 0]_{\mathrm{C}}$, including the overlayed proposed O3- $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ and $\mathrm{MgAl}_{2} \mathrm{O}_{4}$ crystal structures. (d) Proposed epitaxial relationship of $\mathrm{Co}_{3} \mathrm{O}_{4}$ on $\mathrm{MgAl}_{2} \mathrm{O}_{4}$ and $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ on $\mathrm{MgAl}_{2} \mathrm{O}_{4}$ generated using VESTA. ${ }^{35}$ (e) View of the $\mathrm{Co}_{3} \mathrm{O}_{4}(111)$ and O3$\mathrm{Na}_{x} \mathrm{CoO}_{2}(001)_{\text {Hex }}$ planes (blue planes in (d)). The side lengths of white dashed hexagons are $2.89 \AA$ in $\mathrm{Ca}_{3} \mathrm{O}_{4}$ and $2.84 \AA$ in $\mathrm{O} 3-\mathrm{Na}_{x} \mathrm{CoO} 2 .(\mathrm{f})$ View of the $\mathrm{MgAl}_{2} \mathrm{O}_{4}(001)_{\mathrm{C}}$ and $\mathrm{O} 3-\mathrm{Na}_{x} \mathrm{CoO}_{2}(102)_{\text {Hex }}$ planes (gray planes in (d)). The side lengths of white rectangles are ( $17.14 \AA, 2.86 \AA$ ) in $\mathrm{MgAl}_{2} \mathrm{O}_{4}$ and (16.38 $\AA, 2.89 \AA$ ) in $\mathrm{O} 3-\mathrm{Na}_{x} \mathrm{CoO}_{2}$.
glovebox. A holder for the half-cell was made using a $1 / 2^{\prime \prime}$ PFA Tee Compression Fitting, 316 Stainless Steel rods, a PEEK rod, and a conical compression spring. The holder was upright for all experiments using a small block of wood and zip ties. A Whatman Grade GF/D Glass Microfiber separator was used to separate active cathode material from active anode material in the half-cell. The electrolyte was made in-house. The solvent was 50 vol \% ethylene carbonate and 50 vol \% propylene carbonate. ${ }^{4}$ The solute, $\mathrm{NaPF}_{6}$, was then introduced in a 1 Mol concentration. The electrolyte was added to the half-cell in excess. Aluminum foil and stainless-steel mesh were used to wrap the thin film to allow for charge transport, given that the substrate used for thin-film deposition had poor electrical conductivity. The aluminum foil and stainless-steel mesh were also used to limit edge effects. After charging and discharging, the film was removed from the cell and cleaned with IPA in preparation for characterization. We used Biologic's SP300-a two-channel potentiostat/galvanostat with $\pm 1 \mathrm{~A}$ (expandable up to 800 A$)^{24,25}$-for electrochemical measurements.

## ■ RESULTS AND DISCUSSION

## Characterization of Topotactically Transformed

 Structure. The XRD data of topotactically transformed films show a new Bragg peak at $2 \theta=38.4^{\circ}$, corresponding to a lattice spacing of about $2.4 \AA$ (see Figure 2a). To confirm that the transformation is topotactic and that the newly formed structure retains epitaxial alignment with the $\mathrm{MgAl}_{2} \mathrm{O}_{4}$ substrate, we collected an azimuthal XRD scan ( $\varphi$-scan) of the film with the film normal rotated by $\chi=21^{\circ}$ out of the scattering plane, incident angle $\theta=23^{\circ}$, and scattering angle $2 \theta$$=46^{\circ}$. The scan revealed four peaks approximately separated by $90^{\circ}$ and rotated by $45^{\circ}$ off the substrate edges, $[100]_{\mathrm{C}}$ and $[010]_{\mathrm{C}}$. The result confirmed epitaxy (the lack of the crystallographic registry with the substrate along one of its edges would generate no peaks in the $\varphi$-scan). STEM collected in projection along the $[\overline{1} 10]_{\mathrm{C}}$ direction is shown in Figure 2c. The transformed structure has visible atomic layers and looks significantly different from the cubic structure in the substrate. The layers are inclined roughly $65^{\circ}$ with respect to the film surface (see Figure 2c for a high-resolution and Figure 3c for lower-resolution electron microscopy).

Proposed Epitaxial Alignment of $\mathrm{Na}_{x} \mathrm{CoO}_{2}$. The proposed crystallographic orientation of $\mathrm{Na}_{\mathrm{x}} \mathrm{CoO}_{2}$ is shown in Figure 2d, together with the initial $\mathrm{Co}_{3} \mathrm{O}_{4}$ structure and the $\mathrm{MgAl}_{2} \mathrm{O}_{4}$ substrate. For the following analysis, we used $\mathrm{Co}_{3} \mathrm{O}_{4}$ (mp-18748, $\mathrm{Fd} \overline{3} m$, No. 227), $\mathrm{MgAl}_{2} \mathrm{O}_{4}$ (mp-3536, $F d \overline{3} m$, No. 227), and O3- $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ (mp-18921, $R \overline{3} m$, No. 166) structures from materialsproject.org ${ }^{26}$ and modified the lattice constants of $\mathrm{O} 3-\mathrm{Na}_{x} \mathrm{CoO}_{2}$ following ref 27 for $x=1$. The topotactic transformation process starts with $\mathrm{Co}_{3} \mathrm{O}_{4}(001)_{\mathrm{C}}$ plane oriented along the substrate surface $\mathrm{MgAl}_{2} \mathrm{O}_{4}(001)_{\mathrm{C}}$ (see Figure 2d). The $\mathrm{Co}_{3} \mathrm{O}_{4}(111)_{\mathrm{C}}$ plane displays hexagonal symmetry, which is also present in the $\mathrm{Na}_{\mathrm{x}} \mathrm{CoO}_{2}(001)_{\text {Hex }}$ plane (see Figure 2e). Therefore, the $(001)_{\mathrm{Hex}} \mathrm{Na}_{\mathrm{x}} \mathrm{CoO}_{2}$ plane likely replaces the $\mathrm{Co}_{3} \mathrm{O}_{4}(111)_{\mathrm{C}}$ plane: the mismatch between the Co -Co distances within these two planes is less than $2 \%$ (see Figure 2e). We further hypothesize that after the transformation, the $(102)_{\mathrm{Hex}} \mathrm{Na}_{x} \mathrm{CoO}_{2}$ planes are parallel to the substrate surface. The calculated scattering angle of the $102_{\text {Hex }}$ peak is $37.7^{\circ}$, which is consistent with the measured


Figure 3. Microstructure of topotactically transformed $\mathrm{Na}_{x} \mathrm{CoO}_{2}$. (a, b) AFM image of topotactically transformed $\mathrm{Na}_{x} \mathrm{CoO}_{2}$. (c) STEM image of $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ on $\mathrm{MgAl}_{2} \mathrm{O}_{4}(001)_{\mathrm{C}}$ after charge and discharge. The attempts to image pristine $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ were unsuccessful due to electron beam damage. The beam damage was much less severe in electrochemically cycled films. (d) Polarized light optical microscopy of $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ after topotactic transformation.
peak at $38.4^{\circ}$ (see Figure 2a). In addition, the calculated angle between $(102)_{\mathrm{Hex}}$ and $(001)_{\mathrm{Hex}}$ of $72^{\circ}$ is close to the $65^{\circ}$ observed in STEM (see Figure 2d). The discrepancy between experiment and model could be due to possible monoclinic distortions in $\mathrm{Na}_{x} \mathrm{CoO}_{2},{ }^{27}$ lower sodium concentration resulting in lattice rearrangements, ${ }^{27}$ or substrate clamping. The proposed orientation of the $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ with respect to the $\mathrm{MgAl}_{2} \mathrm{O}_{4}$ substrate is shown in Figure 2f. Within this model, the substrate imposes a small compressive strain within the layers of $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ and a larger tensile strain in the direction that is almost perpendicular to the layers (see Figure 2f). Finally, in the proposed orientation of $\mathrm{Na}_{\mathrm{x}} \mathrm{CoO}_{2}$, the $105_{\mathrm{Hex}}$ Bragg peak is accessible when $[110]_{\mathrm{C}}$ lies within the scattering plane, and the film is rotated around $[110]_{\mathrm{C}}$ by $20^{\circ}$, which is consistent with the results of our azimuthal $\phi$-scan. The calculated position of the $105_{\mathrm{Hex}} \mathrm{Bragg}$ peak, $2 \theta=46.5^{\circ}$, is in agreement with the measured value, $2 \theta=46^{\circ}$. Finally, because $\mathrm{Co}_{3} \mathrm{O}_{4}$ has four equivalent $\{111\}_{\mathrm{C}}$ planes, any of these four can locally transform into the $\mathrm{Na}_{x} \mathrm{CoO}_{2}(001)_{\text {Hex }}$ plane. As a result, four twins of the $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ structure are present and visible as four $105_{\mathrm{Hex}}$ reflections in the azimuthal $\phi$-scan (see Figure 2b).

Our interpretation of the structural characterization data suggests a topotactic transformation into the $\mathrm{O} 3-\mathrm{Na}_{x} \mathrm{CoO}_{2}$ structure with $(102)_{\text {Hex }}$ plane parallel to the substrate interface (see Figure 2) and the (102) Hex reflection having the largest intensity. Yet the XRD (Figure 2a) also shows a much weaker peak at $2 \theta=16^{\circ}$. This scattering angle corresponds to the $(001)_{\text {Hex }}$ lattice spacing and reveals $\mathrm{Na}_{\mathrm{x}} \mathrm{CoO}_{2}$ with transition-
metal layers parallel to the substrate. Furthermore, some of the cubic $\mathrm{Co}_{3} \mathrm{O}_{4}$ structure appears to persist after the transformation (see Figure 2c (bottom left) and note the two peaks at $2 \theta=21.9^{\circ}$ and $2 \theta=69.8^{\circ}$ in Figure 2a matching $002_{\mathrm{C}}$ and $006_{C}$, which weaken about 5 -fold in intensity during the topotactic transformation yet remain present). Lei and coauthors reported the formation of different possible $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ structures during solid-state synthesis at high temperatures and various $\mathrm{Na}-\mathrm{Co}$ weight fractions: at intermediate sodium content, $\mathrm{P} 2-\mathrm{Na}_{\mathrm{x}} \mathrm{CoO}_{2}$ is most stable due to entropy, and monoclinic distortions of P 3 and O 3 are possible. ${ }^{27}$ Our XRD and STEM data cannot exclude the presence of these structures.

Microstructure of Topotactically Transformed $\mathrm{Na}_{x} \mathrm{CoO}_{2}$. AFM images of the as-deposited $\mathrm{Co}_{3} \mathrm{O}_{4}$ films (not shown) reveal a smooth surface with a root-mean-square (RMS) height variation of 50 pm . After the topotactic transformation, the AFM data still indicates a flat surface, albeit with cracks visible as dark lines (see Figure 3a,b). The size of the largest crack-free domains is on the order of $10 \mu \mathrm{~m}$ $\times 10 \mu \mathrm{~m}$. Within these crack-free domains, linear height modulations are visible, with lines running at approximately $45^{\circ}$ with respect to the substrate edge $[100]_{\mathrm{C}}$. We elucidate the nature of the lines visible on the surface with cross-sectional STEM (see Figure 3c): the diagonal lines in Figure 3a,b are grooves visible in Figure 3c (see white arrows) separated by about 100 nm . These groves are hypothesized to arise from delamination of the layered structure reported in similar
layered oxides for sodium intercalation. ${ }^{28}$ Only two types of lines are visible on the surface, consistent with the twinning of four $\{111\}_{\mathrm{C}}$ planes into the $(001)_{\text {Hex }}$ plane; two twins produce the same orientation of groves on the surface. The optical microscope image taken with a polarizer and analyzer set at an angle of approximately $0^{\circ}$ from one another shows domains visible in AFM images. Polarized light microscopy can distinguish grain orientation in polycrystalline materials. ${ }^{29,30}$ The contrast seen in this method is perhaps due to different crystallographic facets being exposed and creating anisotropic roughness, which reflects polarized light depending on orientation. Optical microscopy reveals a large variation in domain sizes. Overall, the topotactic transformation generates $\mathrm{Na}_{\mathrm{x}} \mathrm{CoO}_{2}$ with large single crystalline domains, $\sim 100 \mathrm{~nm}$ thick and hundreds of square microns in area, epitaxially aligned to the substrate. The optical images suggest an equal distribution of the two types of domains we observe, which supports our hypothesis that these domains form due to twinning.

Electrochemical Cycling of Topotactically Transformed $\mathrm{Na}_{x} \mathrm{CoO}_{2}$. We charged (sodium extraction from $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ ) and discharged (sodium insertion into $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ ) the cell electrochemically (see Figure 4a,b). Because the


Figure 4. Electrochemical cycling of $\mathrm{Na}_{x} \mathrm{CoO}_{2}$. (a) Schematic of the electrochemical half-cell. (Inset) Thin film with the stainless-steel mesh and alumninum foil wrap. (b) Voltage as a function of time during galvanostatic charge to 3.4 V (blue) and discharge to 2.5 V (red). (c, d) Ex situ XRD patterns of (c) $\mathrm{Na}_{x} \mathrm{CoO}_{2} 102_{\text {Hex }}$ and (d) $\mathrm{MgAl}_{2} \mathrm{O}_{4}(004)_{\mathrm{C}}$ Bragg peak. The black/red/blue curves show data from pristine/charged/discharged specimen. In (c), solid lines (data) and dashed lines (Gaussian fit), and in (d), symbols (data) and solid lines (pseudo-Voight fit) are shown. The vertical dashed lines in (c, d) show the center of the fit function.
substrate is insulating, we placed a stainless-steel mesh on the film. Aluminum foil wrapped from the back side of the substrate connects the current collector with the mesh, while leaving a large area exposed to the electrolyte (see the inset in Figure 4a). During charge, the voltage increased monotonically from 3 to 3.5 V , consistent with electrochemical sodium-ion extraction from $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ in conventional nanoparticulate morphology. ${ }^{8}$ The discharge lasted significantly less time than the charge. Due to the air instability of the film, it is likely that the film self-discharged due to exposure to humidity during XRD data collection.
To confirm electrochemical sodium extraction, we conducted ex situ XRD. After electrochemical charging of the cell,
the XRD data showed a shift of the $102_{\mathrm{Hex}}$ peak to higher angles from $2 \theta=38.41^{\circ}$ to $2 \theta=38.47^{\circ}$, consistent with a shortening of the $(102)_{\mathrm{Hex}}$ interplanar distance. When sodium exits the lattice upon charging, the $(001)_{\text {Hex }}$ lattice constant is expected to increase, and the $(100)_{\text {Hex }}$ lattice spacing is expected to decrease. ${ }^{27}$ Using lattice parameters reported by Lei et al., ${ }^{27}$ we calculated $2 \theta=37.74^{\circ}$ for pristine O3$\mathrm{Na}_{1.00} \mathrm{CoO}_{2}$ and $2 \theta=38.40^{\circ}$ for charged $\mathrm{P} 3-\mathrm{Na}_{0.56} \mathrm{CoO}_{2}$. The Bragg peak shift, therefore, shows the expected tendency, albeit a smaller magnitude. Additionally, the intensity of the $102_{\mathrm{Hex}}$ Bragg peak reduced by a factor of 5 , indicating a structural degradation of $\mathrm{Na}_{\mathrm{x}} \mathrm{CoO}_{2}$ crystallinity during electrochemical charging (see Figure 4c). After cathode discharge, the $102_{\text {Hex }}$ peak did not shift back to its initial position: we observed no significant insertion of Na ions into charged $\mathrm{Na}_{\mathrm{x}} \mathrm{CoO}_{2}$. Possible reasons for the lack of electrochemical Na -ion insertion are structural degradation and surface reactions during charge. Another plausible explanation is the mechanical restraint of the thin film by the substrate: the $(001)_{\text {Hex }}$ lattice spacing is expected to shrink upon Na -ion insertion, ${ }^{27,28}$ yet our proposed epitaxial alignment suggests a large tensile strain oriented primarily perpendicular to the $(001)_{\text {Hex }}$ layers (see Figure 2 f ) potentially preventing a decrease of the interlayer spacing. We also observed a partially reversible shift in the $\mathrm{MgAl}_{2} \mathrm{O}_{4}$ substrate peak, from $2 \theta=44.807^{\circ}$ to $2 \theta=44.827^{\circ}$ during charge and $2 \theta=44.817^{\circ}$ during discharge (see Figure 4 d ). It is possible that electrochemical reactions also occurred in the $\mathrm{MgAl}_{2} \mathrm{O}_{4}$ substrate, which has been discussed as a material for multivalent $\mathrm{Mg}^{2+}$ intercalation in aqueous solutions. ${ }^{31}$

## - CONCLUSIONS

We used MBE to synthesize high-quality $\mathrm{Co}_{3} \mathrm{O}_{4}$ films and subsequently transformed the films to $\mathrm{Na}_{\mathrm{x}} \mathrm{CoO}_{2}$. We presented evidence for the epitaxial registry of the film with respect to the substrate after the topotactic transformation. We also proposed a crystallographic mechanism for phase transformation. By starting with high-quality $(001)_{\mathrm{C}}$ cobalt oxide, rather than the conventionally oriented $(111)_{\mathrm{C}}$ cobalt oxide, we synthesized a uniquely oriented film of $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ with $\mathrm{CoO}_{2}$ layers having a large inclination with the film surface. Using an electrochemical cell, we extracted sodium ions from epitaxial $\mathrm{Na}_{x} \mathrm{CoO}_{2}$, as confirmed by ex situ XRD. In future, the option of substituting Co with other transition metals ( $M$ ) during the atomic deposition of spinel oxides $\mathrm{M}_{3} \mathrm{O}_{4}$ potentially provides a novel tool for the controlled synthesis of $\mathrm{Na}_{x} \mathrm{MO}_{2}$ with various combinations of transition metals. The system thus represents a model system for further characterization of layered oxides for sodium-ion intercalation by using a multimodal approach demonstrated here. We anticipate an expansion to operando measurements to be straightforward and future operando XRD to allow studying subtle crystal rearrangements such as JahnTeller distortions, ${ }^{32}$ operando X-ray reflectivity to reveal surface reactions at the solid-electrolyte interface, ${ }^{33}$ operando optical microscopy, and operando X-ray nanoimaging to visualize the microstructure. ${ }^{34}$ As such, this epitaxial model system will likely advance our understanding of alkaline-ion intercalation into layered oxides for energy storage.

## AUTHOR INFORMATION

## Corresponding Author

Andrej Singer - Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853,

United States; © orcid.org/0000-0002-2965-9242;
Email: asinger@cornell.edu

## Authors

Stephanie D. Matson - Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
Jiaxin Sun - Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
Jason J. Huang - Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States; © orcid.org/0000-0002-6387-1650
Don J. Werder - Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials (PARADIM), Cornell University, Ithaca, New York 14853, United States
Darrell G. Schlom - Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States; Leibniz-Institut für Kristallzüchtung, Berlin 12489, Germany; © orcid.org/0000-0003-2493-6113
Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jpcc.3c00298

## Notes

The authors declare no competing financial interest.

## ■ ACKNOWLEDGMENTS

This research was primarily supported by the National Science Foundation under Grant No. CAREER DMR 1944907 (S.D.M., J.J.H., A.S.: topotactic transformations, electrochemical testing, optical microscopy, atomic force microscopy, X-ray characterization). This work made use of the Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials (PARADIM) (J.S., D.G.S., thin-film synthesis, film characterization) supported by the National Science Foundation under Cooperative Agreement No. DMR2039380. The authors thank Regina Garcia-Mendez for her help in designing a three-electrode experiment at Cornell Energy Systems Institute (CESI) and Hanjong Paik for assistance in the use of the PARADIM facility. Luka Radosavljevic assisted in AFM measurements, Phil Carubia trained on how to use the annealing furnace, and Mark Pfeifer assisted in the collection of the azimuthal scan. Thanks go to Jakob Gollwitzer for helping with additional AFM measurements. Thanks go to Mick Thomas for help with SEM, and John L. Grazul for help with optical microscopy. Thanks go to Noah Schnitzer for helping to confirm the overlay of our expected structure onto our STEM image. Electron microscopy work was supported by the National Science Foundation (Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials (PARADIM)), under Cooperative Agreement No. DMR-2039380. This work made use of a Helios FIB supported by NSF (no. DMR-1539918) and the Cornell Center for Materials Research Shared Facilities, which are supported through the NSF MRSEC program (no. DMR-1719875). Substrate preparation was performed in part at the Cornell NanoScale Facility, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the NSF (grant no. NNCI-2025233). The authors thank Sean C. Palmer for his assistance with substrate preparation.

## REFERENCES

(1) U.S. Energy Information Administration. Annual Electric Generator Report, 2020.
(2) Mariyappan, S.; Wang, Q.; Tarascon, J. M. Will Sodium Layered Oxides Ever Be Competitive for Sodium Ion Battery Applications? J. Electrochem. Soc. 2018, 165, A3714-A3722.
(3) Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A Cost and Resource Analysis of Sodium-Ion Batteries. Nat. Rev. Mater. 2018, 3, No. 18013.
(4) Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-Ion Batteries. Adv. Funct. Mater. 2013, 23, 947-958.
(5) Massé, R. C.; Liu, C.; Li, Y.; Mai, L.; Cao, G. Energy Storage through Intercalation Reactions: Electrodes for Rechargeable Batteries. Natl. Sci. Rev. 2017, 26-53.
(6) Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-Type $\mathrm{Nax}[\mathrm{Fe} 1 / 2 \mathrm{Mn1} / 2] \mathrm{O} 2$ Made from Earth-Abundant Elements for Rechargeable Na Batteries. Nat. Mater. 2012, 11, 512-517.
(7) Venkata Rami Reddy, B.; Gopukumar, S. NaxCoO2 Cathode Material: Synthesized by Inverse Micro- Emulsion Method for Sodium Ion Batteries. ECS Trans. 2013, 53, 49-58.
(8) Delmas, C.; Braconnier, J.; Fouassier, C.; Hagenmuller, P. Electrochemical Intercalation of Sodium in NaxCoO2 Bronzes. Solid State Ionics 1981, 3-4, 165-169.
(9) Hildebrandt, S.; Komissinskiy, P.; Major, M.; Donner, W.; Alff, L. Epitaxial Growth and Control of the Sodium Content in $\mathrm{Na} \times \mathrm{CoO}$ 2 Thin Films. Thin Solid Films 2013, 545, 291-295.
(10) Krockenberger, Y.; Fritsch, I.; Christiani, G.; Habermeier, H.U.; Yu, L.; Bernhard, C.; Keimer, B.; Alff, L. Superconductivity in Epitaxial Thin Films of NaxCoO2•yD2O. Appl. Phys. Lett. 2006, 88, No. 162501.
(11) Venimadhav, A.; Soukiassian, A.; Tenne, D. A.; Li, Q.; Xi, X. X.; Schlom, D. G.; Arroyave, R.; Liu, Z. K.; Sun, H. P.; Pan, X.; Lee, M.; Ong, N. P. Structural and Transport Properties of Epitaxial Na XCoO 2 Thin Films. Appl. Phys. Lett. 2005, 87, No. 172104.
(12) Kehne, P.; Guhl, C.; Ma, Q.; Tietz, F.; Alff, L.; Hausbrand, R.; Komissinskiy, P. Electrochemical Performance of All-Solid-State Sodium-Ion Model Cells with Crystalline Na x CoO 2 Thin-Film Cathodes. J. Electrochem. Soc. 2019, 166, A5328-A5332.
(13) Shibata, T.; Kobayashi, W.; Moritomo, Y. Intrinsic Rapid $\mathrm{Na}^{+}$ Intercalation Observed in $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ Thin Film. AIP Adv. 2013, 3, No. 032104.
(14) Ohta, H.; Kim, S. W.; Ohta, S.; Koumoto, K.; Hirano, M.; Hosono, H. Reactive Solid-Phase Epitaxial Growth of NaxCoO2 (x ~ 0.83 ) via Lateral Diffusion of Na into a Cobalt Oxide Epitaxial Layer. Cryst. Growth Des. 2005, 5, 25-28.
(15) Hasegawa, S. Reflection High-Energy Electron Diffraction. In Characterization of Materials; John Wiley \& Sons, Inc.: Hoboken, NJ, 2012.
(16) Bhargava, A.; Eppstein, R.; Sun, J.; Smeaton, M. A.; Paik, H.; Kourkoutis, L. F.; Schlom, D. G.; Caspary Toroker, M.; Robinson, R. D. Breakdown of the Small-Polaron Hopping Model in Higher-Order Spinels. Adv. Mater. 2020, 32, No. 2004490.
(17) Sun, J.; Parzyck, C. T.; Lee, J. H.; Brooks, C. M.; Kourkoutis, L. F.; Ke, X.; Misra, R.; Schubert, J.; Hensling, Fv.; Barone, M. R.; et al. Canonical Approach to Cation Flux Calibration in Oxide MolecularBeam Epitaxy. Phys. Rev. Mater. 2022, 6, No. 33802.
(18) Warren, B. E. X-Ray Diffraction; Addison-Wesley Pub. Co., 1990.
(19) Paulo, Á. S.; García, R. Unifying Theory of Tapping-Mode Atomic-Force Microscopy. Phys. Rev. B: Condens. Matter Mater. Phys. 2002, 66, No. 041406.
(20) Mertz, J. Introduction to Optical Microscopy; Cambridge University Press, 2019.
(21) Inkson, B. J. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) for Materials Characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods; Elsevier, 2016; pp 17-43.
(22) Pennycook, S. J.; Nellist, P. D. Scanning Transmission Electron Microscopy: Imaging and Analysis; Springer, 2011.
(23) Garcia, G.; Schuhmann, W.; Ventosa, E. A Three-Electrode, Battery-Type Swagelok Cell for the Evaluation of Secondary Alkaline Batteries: The Case of the Ni-Zn Battery. ChemElectroChem 2016, 3, 592-597.
(24) Meddings, N.; Heinrich, M.; Overney, F.; Lee, J. S.; Ruiz, V.; Napolitano, E.; Seitz, S.; Hinds, G.; Raccichini, R.; Gaberšček, M.; et al. Application of Electrochemical Impedance Spectroscopy to Commercial Li-Ion Cells: A Review. J. Power Sources 2020, 480, No. 228742.
(25) Lasia, A. Electrochemical Impedance Spectroscopy and Its Applications. In Modern Aspects of Electrochemistry; Kluwer Academic Publishers: Boston, pp 143-248.
(26) Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation. APL Mater. 2013, 1, No. 011002.
(27) Lei, Y.; Li, X.; Liu, L.; Ceder, G. Synthesis and Stoichiometry of Different Layered Sodium Cobalt Oxides. Chem. Mater. 2014, 26, 5288-5296.
(28) Alvarado, J.; Ma, C.; Wang, S.; Nguyen, K.; Kodur, M.; Meng, Y. S. Improvement of the Cathode Electrolyte Interphase on P2-Na2/ 3Ni1/3Mn2/3O2 by Atomic Layer Deposition. ACS Appl. Mater. Interfaces 2017, 9, 26518-26530.
(29) Gaskey, B.; Hendl, L.; Wang, X.; Seita, M. Optical Characterization of Grain Orientation in Crystalline Materials. Acta Mater. 2020, 194, 558-564.
(30) Newton, C. J.; Vacher, H. C. Correlation of Polarized Light Phenomena With the Orientation of Some Metal Crystals J. Res. Natl. Bur. Stand. 1954; Vol. 53.
(31) Liu, M.; Rong, Z.; Malik, R.; Canepa, P.; Jain, A.; Ceder, G.; Persson, K. A. Spinel Compounds as Multivalent Battery Cathodes: A Systematic Evaluation Based on Ab Initio Calculations. Energy Environ. Sci. 2015, 8, 964-974.
(32) Li, X.; Ma, X.; Su, D.; Liu, L.; Chisnell, R.; Ong, S. P.; Chen, H.; Toumar, A.; Idrobo, J. C.; Lei, Y.; et al. Direct Visualization of the Jahn-Teller Effect Coupled to Na Ordering in $\mathrm{Na} 5 / 8 \mathrm{MnO}$ 2. Nat. Mater. 2014, 13, 586-592.
(33) Lin, F.; Markus, I. M.; Nordlund, D.; Weng, T.-C.; Asta, M. D.; Xin, H. L.; Doeff, M. M. Surface Reconstruction and Chemical Evolution of Stoichiometric Layered Cathode Materials for LithiumIon Batteries. Nat. Commun. 2014, 5, No. 3529.
(34) Luo, A.; Gorobtsov, O. Y.; Nelson, J. N.; Kuo, D. Y.; Zhou, T.; Shao, Z.; Bouck, R.; Cherukara, M. J.; Holt, Mv.; Shen, K. M.; et al. XRay Nano-Imaging of Defects in Thin Film Catalysts via Cluster Analysis. Appl. Phys. Lett. 2022, 121, No. 153904.
(35) Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272-1276.

## Recommended by ACS

Design of High-Performance Defective Graphite-Type Anodes for Sodium-Ion Batteries

Yu Tian, Wen Chen, et al.
MARCH 23, 2023
ACS APPLIED ENERGY MATERIALS
READ [
Na-K Alloy Anode for High-Performance Solid-State Sodium Metal Batteries
Yifeng Cheng, Meng Gu, et al.
DECEMBER 01, 2022
NANO LETTERS

## Homeostatic Solid Solution in Layered Transition-Metal Oxide Cathodes of Sodium-Ion Batteries

| Meng Ren, Fujun Li, et al. |
| :--- |
| DECEMBER 23, 2022 <br> JOURNAL OF THE AMERICAN CHEMICAL SOCIETY |
| READ © |
| Unraveling the Reaction Mystery of Li and Na with Dry Air |
| Yuqi Li, Yong-Sheng Hu, et al. |
| MAY 02, 2023 <br> JOURNAL OF THE AMERICAN CHEMICAL SOCIETY |

Get More Suggestions >


[^0]:    Received: January 13, 2023
    Revised: March 20, 2023
    Published: March 30, 2023

