Research

Energy materials

Defect dynamics and phase transformations in energy storage materials: Electrochemical energy storage devices, the dominant power source for mobile electronics, are increasingly used in hybrid and fully electric vehicles and are promising candidates for the grid storage. Electrodes with increased capacity, faster charge rates, and minimal capacity fade are required. Our group uses various state-of-the-art x-ray scattering and imaging techniques to study the dynamical processes in nanoparticulate lithium-ion and sodium-ion based positive electrode materials. The in-situ understanding of the ion-motion-induced physical phenomena at the single particle level is key to for advanced functionality

 

Quantum materials

New phases of matter far from equilibrium: The emergence of order through symmetry breaking is a fascinating phenomenon. It leads to a plethora of intriguing ground states found in antiferromagnets, Mott insulators, superconductors, and density wave systems. Exploiting states of matter far from equilibrium provides even more surprising routes to symmetry-lowered, ordered states. Photoexcitation is unique in accessing non-equilibrium dynamics, and our group uses pump-probe techniques at the recently developed x-ray free-electron lasers to study ultrafast processes in strongly correlated electrons systems. We seek to explore new non-equilibrium phases of matter, which have the potential for technological applications.

Singer Wiki